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Abstract 

Single-particle energy states in lambda hypernuclei and ordinary nuclei are calculated to study the 

structures of     
   

 and   
   

 nuclei. The phenomenological Woods-Sexon central potential and 

Woods-Sexon lambda-core nucleus potential including spin orbit interaction are used. Single-

particle energy levels are investigated by solving one-body Schrodinger equation with the 

Gaussian basis treatment. 
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Introduction 

In nuclear physics, the nuclear shell model is a model of the atomic nucleus which uses 

the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. 

The study of low-lying excited states of closed shell and near-closed shell provide information 

about specific nuclear orbital nucleus. The purpose of this paper is to determine the energy levels 

of     
   

 and to use the phenomenological Woods-Saxon potential with spin-orbit interaction. It 

is to concentrate on     
   

 nucleus which describes the binding energies with low-lying levels 

schemes. This determination is the fundamental importance for explaining the structure of nuclei.  

The energy levels are found by solving the Schrödinger equation for a single nucleon 

moving in the average potential generated by all other nucleons. Each level may be occupied by a 

nucleon, or empty. Some levels accommodate several different quantum states with the same 

energy, they are said to be degenerate [Greiner, W., A.M. Joachim, 1996]. 

Some nuclei are bound more tightly than others. This is because two nucleons of the same 

kind cannot be in the same state. So the lowest energy state of the nucleus is one where nucleons 

fill all energy levels from the bottom up to some level. The energy levels increase with the orbital 

angular quantum number l, and s, p, d, f ... symbols are used for l = 0, 1, 2, 3, ..... The value of 

total angular momentum is j and the spin orbit interaction depresses the state with total angular 

momentum j = l + ½ and rises the one j = l - ½[Frauenfelder, H. and M. H. Ernest, 1972].  

 

Calculation of Single Particle Energy Levels 

The time-independent Schrödinger equation for potential well is as follows. 

   
2

2 v(r) (r) E (r)
2M
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So, the radial part of Schrödinger equation is as follows. 
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The Gaussian basis wave function is used  
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These linear equations can be solved by using Gauss elimination method which is the 

fundamental one for solving linear systems. And so norm matrix elements, kinetic energy matrix 

element and potential energy matrix elements and root-mean-square distance are analytically 

obtained by using Gaussian standard integral form. By diagonalzing the Hamiltonian matrix, the 

energy eigen-value is obtained with the help of FORTRAN PROGRAM. 
 

Normalization Constant, Kinetic Energy, Centrifugal Potential Energy 

To solve the physical quantities of     
   

 nuclei, the normalization constant is calculated. 

The normalized condition is as follows; 
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The normalized Gaussian basis wave function is defined as follows;  
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 By using standard Integral, the normalized constant is obtained. 
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The kinetic energy is calculated as follows; 
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The average kinetic energy is as follows. 
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The centrifugal potential energy is follows; 
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By using wave function, the centrifugal potential energy is described as follows; 
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The average centrifugal potential energy is calculated.  

 

                     (11) 

The Lambda-Core Nucleus Interaction  

The interactions between nuclei are commonly described by using phenomenological  

Woods-Saxon potential that plays a great role in nuclear physics. Woods-Saxon potential is based 

on the sum of a spin-independent central potential and a spin-orbit potential. 

   0 lsV(r) V (r) V (r) l .s                  (12) 

The form of the generalized spin-independent central Woods-Saxon potential is as follows. 

    0

0 (r R) / a

V
V (r)

1 e
                         (13) 

1
3

0
R r A  is the nuclear radius where r0 = 1.25 fm and A is the mass number.   

Typical values for the parameters are: 
0

V 50MeV, a 0.53fm [Woods, R.D. and D.S. Saxon, 

1954]. 

For lambda particle, 
0

V 30MeV , a 0.6fm  and r0 = 1.1 fm are used [M. Wang, et al., 2014]. 

The potential strength depends upon the number of proton and neutron. It is represent by,  

 
0

N Z
V 50 32

A
 and the nuclear density,   

r R /a

1
(r)

1 e
.  

Woods-Saxon potential including spin-orbit interaction is  

   
0 s

V(r) V (r) V (r)
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                            (14) 

The spin-orbit interaction is described as follows. 
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The total angular momentum is j sl  and the spin of a nucleon is 1
2

. 

For  
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So, the average Woods-Saxon potential with spin orbit interaction, for 
1

j
2

l state is as follow,  

 

  

 

 

 

So, the average Woods-Saxon potential with spin orbit interaction, for 
1

j
2

l state is as 

follow,  

 

 

 

 

           

 Root-Mean Square Distance 

The root-mean square distance of a particle is as follows. 

   2 * 2r (r) r (r) dr                      (20) 

By using normalized wave function, the root-mean square distance is described as follows. 
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Results  

The calculated results of energy levels of 
208

82
Pb  and 

208 Pb are shown in Table 1 and 

Table 2 and then the corresponding energy shell levels are shown in Fig. 1 and Fig. 2 

respectively. In these figures, the innermost level 1s1/2 has the highest binding energy. The 
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binding energy of the single particle 1s1/2 state is gradually decreased to 1i11/2 levels away from 

the 
208

82
Pb nucleus. The values of total energy decrease with the increasing of orbital angular 

momentum. In spin-orbit interaction, a single particle has a doublet state. The splitting of a single 

particle has 
1

j
2

l  and 
1

j
2

l . It is found that 
1

2
l  state is the lower state and more 

bounds than the upper level, 
1

2
l  state. 

Discussion 

By comparing the calculated results of energy levels of 208
Pb  and 

208

82
Pb , the energy levels 

of -hypernucleus is smaller than the ordinary nuclei and the energy of 
208 Pb  nuclei is looser 

than the 
208

82
Pb  nuclei. Then, the level splitting between 1p1/2 and 1p3/2 for 

208 Pb  is 0.66 MeV and 

that for 
208

82
Pb  is 0.28 MeV respectively. 

The energy of 
208 Pb nucleus at s-state is calculated and it is -25.29MeV and it is nearly 

equal to experimental result, -26.3 MeV [Chhanda ,S., and A.Thomas, 2018]. 

The values of root-mean-square distances decrease with the total binding energies of 
208 Pb   and 

208

82
Pb  nucleus due to the and sl    interaction. The innermost portion of these two nuclei has zero 

potential and the higher binding energy of 
1

2
l  state is the outer side of the lower binding 

energy of  
1

2
l  state. So, the root-mean-square distance of  

1

2
l +  state is greater than that of 

1

2
l state.  

Conclusion 

The Woods-Saxon potential is a convenient phenomenological choice for the one body 

potential. It provides a model for the properties of bound-state and continuum single-particle 

wave functions.   
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Table 1 The Physical Quantities of 
208

82
Pb  

Single-Particle State 

of 
208

82
Pb  

Total Energy 

(MeV) 

Root-Mean-

Square 

Distance(fm) 

1s1/2 -46.09 3.94 

1p3/2 -42.25 4.63 

1p1/2 -41.97 4.56 

1d5/2 -37.64 5.11 

1d3/2 -36.93 4.99 

1f7/2 -32.37 5.48 

1f5/2 -30.99 5.32 

1g9/2 -26.50 5.79 

1g7/2 -24.21 5.58 

1h11/2 -20.11 6.07 

1h9/2 -16.67 5.82 

1i13/2 -13.26 6.32 

1i11/2 -8.43 6.05 

 

Table 2 The Physical Quantities of 
208 Pb  

Single-Particle State 

of 
208 Pb  

Total Energy 

(MeV) 

Root-Mean-

Square 

Distance(fm) 

1s1/2 -25.29 3.60 

1p3/2 -20.97 4.39 

1p1/2 -20.32 4.20 

1d5/2 -15.99 4.94 

1d3/2 -14.43 4.76 

1f7/2 -10.54. 5.40 

1f5/2 -7.68 5.19 

1g9/2 -4.64 5.85 

1g7/2 -0.35 5.79 
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Figure 1 Single-particle energy levels of 
208

82
Pb  

 

Figure 2 Single-particle energy levels of 
208 Pb  
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